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The heat flux to a metal particle in the plasma of a short argon arc of atmospheric pressure in depositing
metallurgical coatings has been calculated. The limiting approximations of a continuum and free-molecular
flow yield comparable results (about 6⋅108 W/m2). The radiant-flux density has been evaluated. It has been
shown that the heating of macroparticles is determined mainly by the conductive mechanism of energy transfer.

The results obtained in [1] demonstrate a substantial improvement of the efficiency of plasma spraying with
powder materials using a short argon arc as compared to the cases where traditional methods are used. The develop-
ment of the technology proposed necessitates a more detailed consideration of the degree of heating of macroparticles
and determination of the reliability of the data obtained on the basis of other approaches.

In [1, 2], it has been shown that traditional pyrometric methods are inapplicable to studying the heating of
powders in a short argon arc. This is attributed to the fact that direct observation of the particle surface in the flow
is impossible because of both the high temperature of the argon plasma and the intense ablation of the macroparticle,
resulting in a vapor shell around it. The original method proposed by the authors for determination of the size of par-
ticles in a plasma flow is based on the observation of their diffraction images formed by the shadowing of a laser
beam. The density of the heat flux to a particle was found from the experimentally determined removal of its mass in
motion to the product surface in a plasma formation with a measured temperature field. The regime of the plasma unit
[1] ensured generation of a laminar plasma flow (Re D 10). The occurrence of an appreciable turbulization of the flow
near the macroparticle surface was highly improbable. In this connection, it was difficult to expect a substantial de-
struction of it by mechanisms other than evaporation, for example, by removal of the small-droplet phase. Conse-
quently, in the algorithm developed for calculation of the particle temperature, we considered the removal of a
substance just by evaporation.

Procedures for calculating the heat fluxes to a macroparticle for different flow models determined by the value
of the Knudsen number Kn = l/L have been proposed in [3–8]. However, using the value of Kn, it is difficult to re-
liably separate different regimes of flow about particles, which results in disagreement between the calculated charac-
teristics and the characteristics realized in the plasma formation. At the same time, it should be noted that in [6] there
are errors in determining the components of the heat flux.

In this work, we have calculated the densities of the heat flux to a particle in the plasma of a short argon arc
using different approaches. The radiant energy flux has also been considered in addition to the conductive flux.

In considering the regime of a continuum where the Knudsen number is very small, one employs the ap-
proach based on the Navier–Stokes equations and the Fourier heat conduction law with boundary conditions which dis-
regard a possible temperature jump near the surface of the macroparticle. For this case, in [7] the density of the heat
flux to a spherical particle is calculated as

Qc = 
S∞ − Ss

R
 , (1)

where
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S = ∫ 
Tr

T

λ (T) dT , (2)

and Tr is the temperature of the reference point selected arbitrarily. Using the data of [9] on the thermal conductivity
of an argon plasma, we obtain that the heat flux to a particle with a radius of 4⋅10−5 m is Qc = 7.5⋅108 W/m2 in the
short argon arc.

When the Kn number is not negligibly small, consideration is given to the regime of sliding flow or a tem-
perature jump. Using the approach based on a jump in the thermal-conductivity potential, it has been found in [8] for
the range 10−3 < Kn < 10−1 that the heat flux onto a particle can be represented in the form

Qt.j = αQc = 
Qc
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where γ is specific-heat ratio and the effective number Kn∗  = l∗  ⁄ 2R is determined in terms of the mean free path of
plasma particles in a temperature range of Ts to T:

l
∗
 = 

2 sλt
ρg,sVTs scpt

 Prs . (4)

Here Pr = µCp
 ⁄ λ. The average values of the thermal conductivity and the heat capacity of the plasma are calculated

as sλt = (Sg − Ss)/(Tg − Ts) and sCpt = (Hg − Hs)/(Tg − Ts). The surface temperature differs from the plasma tempera-
ture because of the Knudsen effect (the difference Tg − Ts represents a temperature jump on the particle surface).

By employing the iteration procedure (see [8]) we can show that for the particle with R = 4⋅10−5 we have
l∗  = 3⋅10−6 m, Kn = 0.0375, Tg = 11,400 K, and α = 0.88 under the considered conditions of a short argon arc. Thus,
in the case of flow with a temperature jump the heat-flux density will be Qt.j = 6.6⋅108 W/m2.

To describe the interaction of the macroparticles with the plasma flow at large Knudsen numbers it is neces-
sary to simultaneously solve the Boltzmann equations for the velocity-distribution functions of molecules, ions, and
electrons and the Poisson equation for electrostatic potential. From an analysis of the effective interaction potential it
follows that in the case of weak (R < RD) and strong (R >> RD) plasma shielding the cross sections of collisions of the
ions and electrons with the macroparticle depend just on the potential of its surface ϕs and not on the spatial distribu-
tion in the plasma ϕ(r). This enables us to employ the velocity-distribution functions in an undisturbed plasma at a
large distance from the macroparticle in computing the flows in the free-molecular regime.

In collisions of the plasma atoms, ions, and electrons with the surface of a heated particle, the energy is trans-
ferred as a result of their scattering on the surface, recombination of the electrons, and neutralization of the ions. In
the case of a molten metal macroparticle the accommodation coefficient of the gases is close to unity and the effi-
ciency of recombination and neutralization of the charged particles is very high [10]; therefore, in what follows we
omit the corresponding coefficients.

Atoms, ions, and electrons moving toward the macroparticle at the external boundary of the space-charge layer
and emitted by the boundary surface have the Maxwellian velocity-distribution functions
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The distribution functions of the incoming plasma particles fn
 + (n = a, i, e) contain the parameters of an undisturbed

plasma flow Tn
 + = T and Nn

+ = Nn. The distribution functions of heavy plasma particles reflected by the surface fn
 − =

(n = a, i) and of emitted electrons (n = e) are characterized by the macroparticle-surface temperature Tn
 − = Ts. The

densities of the ions and the atoms Nn
− (n = a, i) are determined from the condition of absence of their accumulation

105



on the surface, i.e., Na,i
−  = √T ⁄ Ts  Na,i

+ . The flow of thermoelectrons which are emitted by the macroparticle is found
from the Richardson formula (for bronze we assume that Φe = 4.47 eV):
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The coordinate system is selected in the following manner. At an arbitrary point of a spherical surface, the z
axis is directed toward the center of the macroparticle while the x axis is directed tangentially to its surface. Conse-
quently, the densities of the heat fluxes transferred by plasma particles can be represented as
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In traversing the space-charge layer, the ions gain additional energy while the electrons lose energy −eϕf; consequently,
δa = 0, δi = 1, and δe = 1. The lower limit of integration of Vzn for dVz is equal to zero for the atoms and the ions
(n = a, i) since the latter will not feel the presence of the attracting field because of the small thickness of the shield-
ing layer. For the electrons we have Vze = (−2eϕf

 ⁄ me)
1 ⁄ 2 since when Vz < Vze they cannot reach the surface because

of the presence of a negative floating potential in it. The charged plasma particles transfer the energy of their charge
state Wn in addition to the kinetic energy. In collision with the surface, the electrons arrive, on the average, at the
Fermi level and transfer the energy We = Φe to the metal lattice. When the ions are neutralized at the surface, the
effective ionization energy Wi = E − Φe is released (E = 15.755 eV for argon).

Thus, we can obtain the following expressions for the components of the heat flux [4–6]: for the atoms

Qa = Qa
+
 − Qa

−
 = Ja

+
 (2kT − 2kTs) ,   Ja

+
 = 

1
4

 NaVTa , (8)

where Ja
+ is the atomic flow incident on the macroparticle and VTa = √ 8kT ⁄ πma  is their average thermal velocity in

the plasma; for the ions

Qi = Qi
+
 − Qi

−
 = Ji

+
 (2kT − eϕf + (E − Φe) − 2kTs) ,   Ji

+
 = 

1
4

 NiVTi , (9)

where Ji
+ is the ionic flow incident on the macroparticle and VTi = VTa; for the electrons
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where Je
+ is the flow of plasma electrons incident on the macroparticle, VTe = √ 8kT ⁄ πme , and it is taken into account

that the energy Φe is additionally consumed by the emission of thermoelectrons.
The heat flux from the plasma to a particle strongly depends on its charge state, i.e., the thermal and charge

states of the plasma and the body turn out to be related. In the case of the Maxwellian plasma equilibrium at infinity
where the electric field is shielded in the boundary layer of the order of a Debye radius that is much smaller than the
mean free paths of the plasma particles ln, we can separate the electrodynamic and thermal problems.

The time of the process of charging of a macroparticle is usually much shorter than the times of thermal and
hydrodynamic processes. Therefore, we can describe the interaction of the macroparticle with the plasma in the quasis-
tationary approximation for the equilibrium (floating) potential ϕs = ϕf.

The floating potential of the macroparticle surface is determined using the equation of balance of the charge
flows of the ions and electrons from the plasma and of thermoelectrons

Je
+
 − Ji

+
 − Je

−
 = 0 ; (11)
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For the argon plasma of atmospheric pressure at T  = 15,000 K the contribution of thermoemission to the
process of charging of a bronze particle becomes appreciable when Ts > 3500 K. At Ts = 2800 K [1], the floating po-
tential is ϕf = −7.25 V (eϕf

 ⁄ kT = −5.6). For the charge of a spherical particle we obtain q = Ze = 4πε0Rϕf (in our
case R = 4⋅10−5; consequently, Z  = −2⋅105).

Thus, in the approximation of free-molecular flow, the total heat flux to a metal particle in the argon plasma
with a temperature of 15,000 K and a concentration of electrons of 2⋅1023 m−3 [11] is found as

Qf.m = Qa + Qi + Qe = 6.5⋅10
8
  W ⁄ m

2
 , (13)

where Qa, Qi, and Qe are equal to 0.2⋅108, 4.7⋅108, and 1.6⋅108 W/m2 respectively, i.e., the main contribution to the
heating of the particle is made by the ions. The results of calculation of the density of the heat flux to the particle as
a function of the temperature of the atmospheric-pressure argon plasma are presented in Fig. 1.

The radiant flux to the macroparticle in the short argon arc was determined in the approximation of an opti-
cally thin plasma. In this case the expression for the specific heat-flux power has the form [12]

Br = 
4σT

4

LP
 ,   LP = 

σT
4

∫ 
0

∞

κνSPdν

 , (14)

where κν is the absorption coefficient of the plasma and SP is the Planck function. The values of the Planckian aver-
age LP for the argon plasma can be found in [12] (LP = 0.13 m at p = 1 atm and T = 15,000 K).

The corresponding integration with the use of the temperature fields measured in the arc channel yields Qr =
3⋅106 W/m2 for the density of the heat flux to the particle, which is two orders of magnitude lower than the density
of the conductive heat flux.

CONCLUSIONS

1. The heating of macroparticles in the plasma of a short argon arc is determined mainly by the mechanism
of energy transfer.

Fig. 1. Temperature dependence of the density of the heat flux from an atmos-
pheric-pressure argon plasma to a macroparticle in the approximation of free-
molecular flow: 1) Qa; 2) Qe; 3) Qi; 4) Qf.m. Q, W/m2; T, K.
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2. Different methods of calculation of the heat flux within methodological errors yield comparable results:

Qc = 7.5⋅10
8
  W ⁄ m

2
 ;   Qt.j = 6.6⋅10

8
  W ⁄ m

2
 ;   Qf.m = 6.5⋅10

8
  W ⁄ m

2
 .

At the same time, they are in good agreement with the value Q = 4.3⋅108 W/m2 obtained experimentally [1, 2].
3. To estimate the value of the heat flux from an atmospheric-pressure argon plasma at T D 15,000 K to a

macroparticle, for example, in selecting the technological regime of deposition of coatings, one can employ the sim-
plest procedures corresponding to the regimes of flow with large Knudsen numbers.

This work was carried out with partial support from the Belarusian Republic Foundation for Basic Research
(project T01-284).

NOTATION

Re, Reynolds number; Kn, Knudsen number; Q, heat-flux density; p, pressure; T, temperature of the plasma;
Ts, temperature of the macroparticle surface; S, thermal-conductivity potential; λ, thermal conductivity of the plasma;
Cp, specific heat at constant pressure; R, radius of a macroparticle; ρ, density; H, enthalpy; δ, dimensionless parameter;
V, velocity; f, velocity-distribution function of plasma particles; l, mean free path; L, characteristic dimension of the
body; m, mass; N, concentration; W, energy of the charge state of an electron or an ion; E, ionization potential of the
gas; q, particle charge; Z, particle charge in the units of electron charge; Pr, Prandtl number; µ, plasma viscosity; Φe,
electronic work on escaping from the macroparticle material; ϕ, potential; α, parameter characterizing the Knudsen ef-
fect; J, plasma-particle fluxes; Br, specific radiant-flux power; ν, radiation frequency; RD, Debye radius; AR = 1.2⋅106

A⋅m−2⋅K−2, Richardson constant; e = 1.6⋅10−19 C, electron charge; k = Boltzmann constant; ε0, electric constant; σ, Ste-
fan–Boltzmann constant. Sub- and superscripts: x, y, z, coordinates; a, atom; i, ion; e, electron; n = a, i, and e; s, sur-
face; f, floating; c, continuum; t.j, temperature jump; f.m, free molecular; r, radiant; P, Planck; D, Debye; R,
Richardson; g, plasma; +, in the direction to a macroparticle; −, in the direction from a macroparticle; ∗ , effective.
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